om p - ga s / 97 05 00 1 v 1 2 9 A pr 1 99 7 PHASE SEGREGATION DYNAMICS IN PARTICLE SYSTEMS WITH LONG RANGE INTERACTIONS I : MACROSCOPIC LIMITS

نویسنده

  • Joel L. Lebowitz
چکیده

We present and discuss the derivation of a nonlinear non-local integro-differential equation for the macroscopic time evolution of the conserved order parameter ρ(r, t) of a binary alloy undergoing phase segregation. Our model is a d-dimensional lattice gas evolving via Kawasaki exchange dynamics, i.e. a (Poisson) nearest–neighbor exchange process, reversible with respect to the Gibbs measure for a Hamiltonian which includes both short range (local) and long range (nonlocal) interactions. The nonlocal part is given by a pair potential γJ(γ|x− y|), γ > 0, x and y in Z, in the limit γ → 0 . The macroscopic evolution is observed on the spatial scale γ and time scale γ, i.e., the density, ρ(r, t), is the empirical average of the occupation numbers over a small macroscopic volume element centered at r = γx. A rigorous derivation is presented in the case in which there is no local interaction. In a subsequent paper (part II), we discuss the phase segregation phenomena in the model. In particular we argue that the phase boundary evolutions, arising as sharp interface limits of the family of equations derived in this paper, are the same as the ones obtained from the corresponding limits for the Cahn-Hilliard equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : p at t - so l / 9 70 50 01 v 1 2 9 A pr 1 99 7 PHASE SEGREGATION DYNAMICS IN PARTICLE SYSTEMS WITH LONG RANGE INTERACTIONS II : INTERFACE MOTION

We study properties of the solutions of a family of second order integrodifferential equations, which describe the large scale dynamics of a class of microscopic phase segregation models with particle conserving dynamics. We first establish existence and uniqueness as well as some properties of the instantonic solutions. Then we concentrate on formal asymptotic (sharp interface) limits. We argu...

متن کامل

Phase Segregation Dynamics in Particle Systems with Long Range Interactions. I. Macroscopic Limits

We present and discuss the derivation of a nonlinear nonlocal integrodifferential equation for the macroscopic time evolution of the conserved order parameter p(r, tl of a binary alloy undergoing phase segregation. Our model is a d-dimensional lattice gas evolving via Kawasaki exchange dynamics, i.e., a (Poisson) nearest neighbor exchange process, reversible with respect to the Gibbs measure fo...

متن کامل

ar X iv : c om p - ga s / 97 04 00 1 v 1 1 7 A pr 1 99 7 Lattice Gas Prediction is P - complete

We show that predicting the HPP or FHP III lattice gas for finite time is equivalent to calculating the output of an arbitrary Boolean circuit, and is therefore P-complete: that is, it is just as hard as any other problem solvable by a serial computer in polynomial time. It is widely believed in computer science that there are inherently sequential problems, for which parallel processing gives ...

متن کامل

ar X iv : h ep - p h / 98 05 21 7 v 2 2 A pr 1 99 9 Experimental Status of Gravitational - Strength Forces in the Sub - Centimeter Regime

We review the experimental constraints on additional macroscopic Yukawa forces for interaction ranges below 1 cm, and summarize several theoretical predictions of new forces in this region. An experiment using 1 kHz mechanical oscillators as test masses should be sensitive to much of the parameter space covered by the predictions.

متن کامل

RTES-03 Interfaces.indd

[ B ur ns 20 07 ] B u rn s, A & W el lin gs , A C o n cu rr en t a n d R ea l-T im e Pr o gr am m in g in A d a, e d it io n C am b ri d ge U n iv er si ty P re ss 2 00 7 [ M o to ro la 19 96 ] M o to ro la Ti m e Pr o ce ss in g U n it R ef er en ce M an u al 1 99 6 p p . 1 -1 42 [ M o to ro la 20 00 ] M o to ro la M PC 56 5 & M PC 56 6 2 00 0 p p . 1 -1 31 2 [ P ea co ck 19 97 ] Pe ac o ck , ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996